Schur-Concavity for Avoidance of Increasing Subsequences in Block-Ascending Permutations
نویسنده
چکیده
For integers a1, . . . , an > 0 and k > 1, let Lk+2(a1, . . . , an) denote the set of permutations of {1, . . . , a1 + · · · + an} whose descent set is contained in {a1, a1 + a2, . . . , a1+ · · ·+an−1}, and which avoids the pattern 12 . . . (k+2). We exhibit some bijections between such sets, most notably showing that #Lk+2(a1, . . . , an) is symmetric in the ai and is in fact Schur-concave. This generalizes a set of equivalences observed by Mei and Wang.
منابع مشابه
Log-concavity and q-Log-convexity Conjectures on the Longest Increasing Subsequences of Permutations
Let Pn,k be the number of permutations π on [n] = {1, 2, . . . , n} such that the length of the longest increasing subsequences of π equals k, and let M2n,k be the number of matchings on [2n] with crossing number k. Define Pn(x) = ∑ k Pn,kx k and M2n(x) = ∑ k M2n,kx . We propose some conjectures on the log-concavity and q-log-convexity of the polynomials Pn(x) and M2n(x).
متن کاملIncreasing and Decreasing Subsequences and Their Variants
We survey the theory of increasing and decreasing subsequences of permutations. Enumeration problems in this area are closely related to the RSK algorithm. The asymptotic behavior of the expected value of the length is(w) of the longest increasing subsequence of a permutation w of 1, 2, . . . , n was obtained by Vershik-Kerov and (almost) by Logan-Shepp. The entire limiting distribution of is(w...
متن کاملIncreasing Subsequences in Nonuniform Random Permutations
Connections between longest increasing subsequences in random permutations and eigenvalues of random matrices with complex entries have been intensely studied. This note applies properties of random elements of the finite general linear group to obtain results about the longest increasing and decreasing subsequences in non-uniform random permutations.
متن کاملThe Minimum Number of Monotone Subsequences
Erdős and Szekeres showed that any permutation of length n ≥ k2 + 1 contains a monotone subsequence of length k + 1. A simple example shows that there need be no more than (n mod k) (dn/ke k+1 ) + (k − (n mod k))(bn/kc k+1 ) such subsequences; we conjecture that this is the minimum number of such subsequences. We prove this for k = 2, with a complete characterisation of the extremal permutation...
متن کاملGl(n,q) and Increasing Subsequences in Nonuniform Random Permutations
Connections between longest increasing subsequences in random permutations and eigenvalues of random matrices with complex entries have been intensely studied. This note applies properties of random elements of the finite general linear group to obtain results about the longest increasing subsequence in non-uniform random permutations.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Electr. J. Comb.
دوره 24 شماره
صفحات -
تاریخ انتشار 2017